# Copyright 2022-2023 Gentoo Authors # Distributed under the terms of the GNU General Public License v2 EAPI=8 PYTHON_COMPAT=( python3_{9..11} ) inherit python-single-r1 cmake cuda flag-o-matic prefix MYPN=pytorch MYP=${MYPN}-${PV} DESCRIPTION="A deep learning framework" HOMEPAGE="https://pytorch.org/" SRC_URI="https://github.com/pytorch/${MYPN}/archive/refs/tags/v${PV}.tar.gz -> ${MYP}.tar.gz" LICENSE="BSD" SLOT="0" KEYWORDS="~amd64" IUSE="cuda distributed fbgemm ffmpeg gloo mpi nnpack +numpy opencl opencv openmp qnnpack tensorpipe xnnpack" RESTRICT="test" REQUIRED_USE=" ${PYTHON_REQUIRED_USE} ffmpeg? ( opencv ) mpi? ( distributed ) tensorpipe? ( distributed ) distributed? ( tensorpipe ) gloo? ( distributed ) " # ?? ( cuda rocm ) # CUDA 12 not supported yet: https://github.com/pytorch/pytorch/issues/91122 RDEPEND=" ${PYTHON_DEPS} dev-cpp/gflags:= >=dev-cpp/glog-0.5.0 dev-libs/cpuinfo dev-libs/libfmt dev-libs/protobuf:= dev-libs/pthreadpool dev-libs/sleef sci-libs/lapack >=sci-libs/onnx-1.12.0 sci-libs/foxi cuda? ( =dev-libs/cudnn-8* dev-libs/cudnn-frontend:0/8 <dev-util/nvidia-cuda-toolkit-12:=[profiler] ) fbgemm? ( dev-libs/FBGEMM ) ffmpeg? ( media-video/ffmpeg:= ) gloo? ( sci-libs/gloo[cuda?] ) mpi? ( virtual/mpi ) nnpack? ( sci-libs/NNPACK ) numpy? ( $(python_gen_cond_dep ' dev-python/numpy[${PYTHON_USEDEP}] ') ) opencl? ( virtual/opencl ) opencv? ( media-libs/opencv:= ) qnnpack? ( sci-libs/QNNPACK ) tensorpipe? ( sci-libs/tensorpipe[cuda?] ) xnnpack? ( >=sci-libs/XNNPACK-2022.12.22 ) " DEPEND=" ${RDEPEND} dev-cpp/eigen cuda? ( dev-libs/cutlass ) dev-libs/psimd dev-libs/FP16 dev-libs/FXdiv dev-libs/pocketfft dev-libs/flatbuffers sci-libs/kineto $(python_gen_cond_dep ' dev-python/pyyaml[${PYTHON_USEDEP}] dev-python/pybind11[${PYTHON_USEDEP}] ') " S="${WORKDIR}"/${MYP} PATCHES=( "${FILESDIR}"/${PN}-2.0.0-gentoo.patch "${FILESDIR}"/${PN}-1.13.0-install-dirs.patch "${FILESDIR}"/${PN}-1.12.0-glog-0.6.0.patch "${FILESDIR}"/${PN}-1.13.1-tensorpipe.patch "${FILESDIR}"/${PN}-2.0.0-gcc13.patch "${FILESDIR}"/${PN}-2.0.0-cudnn_include_fix.patch ) src_prepare() { filter-lto #bug 862672 sed -i \ -e "/third_party\/gloo/d" \ cmake/Dependencies.cmake \ || die cmake_src_prepare pushd torch/csrc/jit/serialization || die flatc --cpp --gen-mutable --scoped-enums mobile_bytecode.fbs || die popd # prefixify the hardcoded paths, after all patches are applied hprefixify \ aten/CMakeLists.txt \ caffe2/CMakeLists.txt \ cmake/Metal.cmake \ cmake/Modules/*.cmake \ cmake/Modules_CUDA_fix/FindCUDNN.cmake \ cmake/Modules_CUDA_fix/upstream/FindCUDA/make2cmake.cmake \ cmake/Modules_CUDA_fix/upstream/FindPackageHandleStandardArgs.cmake \ cmake/public/LoadHIP.cmake \ cmake/public/cuda.cmake \ cmake/Dependencies.cmake \ torch/CMakeLists.txt \ CMakeLists.txt } src_configure() { if use cuda && [[ -z ${TORCH_CUDA_ARCH_LIST} ]]; then ewarn "WARNING: caffe2 is being built with its default CUDA compute capabilities: 3.5 and 7.0." ewarn "These may not be optimal for your GPU." ewarn "" ewarn "To configure caffe2 with the CUDA compute capability that is optimal for your GPU," ewarn "set TORCH_CUDA_ARCH_LIST in your make.conf, and re-emerge caffe2." ewarn "For example, to use CUDA capability 7.5 & 3.5, add: TORCH_CUDA_ARCH_LIST=7.5 3.5" ewarn "For a Maxwell model GPU, an example value would be: TORCH_CUDA_ARCH_LIST=Maxwell" ewarn "" ewarn "You can look up your GPU's CUDA compute capability at https://developer.nvidia.com/cuda-gpus" ewarn "or by running /opt/cuda/extras/demo_suite/deviceQuery | grep 'CUDA Capability'" fi local mycmakeargs=( -DBUILD_CUSTOM_PROTOBUF=OFF -DBUILD_SHARED_LIBS=ON -DUSE_CCACHE=OFF -DUSE_CUDA=$(usex cuda) -DUSE_CUDNN=$(usex cuda) -DUSE_FAST_NVCC=$(usex cuda) -DTORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-3.5 7.0}" -DBUILD_NVFUSER=$(usex cuda) -DUSE_DISTRIBUTED=$(usex distributed) -DUSE_MPI=$(usex mpi) -DUSE_FAKELOWP=OFF -DUSE_FBGEMM=$(usex fbgemm) -DUSE_FFMPEG=$(usex ffmpeg) -DUSE_GFLAGS=ON -DUSE_GLOG=ON -DUSE_GLOO=$(usex gloo) -DUSE_KINETO=OFF # TODO -DUSE_LEVELDB=OFF -DUSE_MAGMA=OFF # TODO: In GURU as sci-libs/magma -DUSE_MKLDNN=OFF -DUSE_NCCL=OFF # TODO: NVIDIA Collective Communication Library -DUSE_NNPACK=$(usex nnpack) -DUSE_QNNPACK=$(usex qnnpack) -DUSE_XNNPACK=$(usex xnnpack) -DUSE_SYSTEM_XNNPACK=$(usex xnnpack) -DUSE_TENSORPIPE=$(usex tensorpipe) -DUSE_PYTORCH_QNNPACK=OFF -DUSE_NUMPY=$(usex numpy) -DUSE_OPENCL=$(usex opencl) -DUSE_OPENCV=$(usex opencv) -DUSE_OPENMP=$(usex openmp) -DUSE_ROCM=OFF # TODO -DUSE_SYSTEM_CPUINFO=ON -DUSE_SYSTEM_PYBIND11=ON -DUSE_UCC=OFF -DUSE_VALGRIND=OFF -DPYBIND11_PYTHON_VERSION="${EPYTHON#python}" -DPYTHON_EXECUTABLE="${PYTHON}" -DUSE_ITT=OFF -DBLAS=Eigen # avoid the use of MKL, if found on the system -DUSE_SYSTEM_EIGEN_INSTALL=ON -DUSE_SYSTEM_PTHREADPOOL=ON -DUSE_SYSTEM_FXDIV=ON -DUSE_SYSTEM_FP16=ON -DUSE_SYSTEM_GLOO=ON -DUSE_SYSTEM_ONNX=ON -DUSE_SYSTEM_SLEEF=ON -Wno-dev -DTORCH_INSTALL_LIB_DIR="${EPREFIX}"/usr/$(get_libdir) -DLIBSHM_INSTALL_LIB_SUBDIR="${EPREFIX}"/usr/$(get_libdir) ) if use cuda; then addpredict "/dev/nvidiactl" # bug 867706 addpredict "/dev/char" mycmakeargs+=( -DCMAKE_CUDA_FLAGS="$(cuda_gccdir -f | tr -d \")" ) fi cmake_src_configure } src_install() { cmake_src_install use cuda && dolib.so "${BUILD_DIR}"/lib/libnvfuser_codegen.so insinto "/var/lib/${PN}" doins "${BUILD_DIR}"/CMakeCache.txt rm -rf python mkdir -p python/torch/include || die mv "${ED}"/usr/lib/python*/site-packages/caffe2 python/ || die mv "${ED}"/usr/include/torch python/torch/include || die cp torch/version.py python/torch/ || die rm -rf "${ED}"/var/tmp || die python_domodule python/caffe2 python_domodule python/torch }