
EAPI Cheat Sheet

Christian Faulhammer
fauli@gentoo.org

Ulrich Müller
ulm@gentoo.org

Version 6.0
16th April 2017

Abstract

An overview of the main EAPI changes in Gentoo, for
ebuild authors. For full details, consult the Package Man-
ager Specification found on the project page;1 this is an
incomplete summary only.

Official Gentoo EAPIs are consecutively numbered in-
tegers (0, 1, 2, . . .). Except where otherwise noted, an
EAPI is the same as the previous EAPI. All labels refer to
the PMS document itself, built from the same checkout as
this overview.

This work is released under the Creative Commons
Attribution-Share Alike 3.0 Licence.2

EAPIs 0, 1, and 2

Omitted for lack of space. See version 5.0 of this document
for differences between these previous EAPIs.

EAPI 3 (2010-01-18)

Additions/Changes

Support for .xz Unpack of .xz and .tar.xz files is
possible without any custom src_unpack functions.
See UNPACK-EXTENSIONS on page 67.

Offset prefix Supporting installation on Prefix-enabled
systems will be easier with this EAPI.

1https://wiki.gentoo.org/wiki/Project:Package_Manager_Specification
2http://creativecommons.org/licenses/by-sa/3.0/

mailto:fauli@gentoo.org
mailto:ulm@gentoo.org
https://wiki.gentoo.org/wiki/Project:Package_Manager_Specification
http://creativecommons.org/licenses/by-sa/3.0/

EAPI 4 (2011-01-17)

Additions/Changes

pkg_pretend Some useful checks (kernel options for
example) can be placed in this new phase to inform
the user early (when just pretending to emerge the
package). Most checks should usually be repeated in
pkg_setup. See PKG-PRETEND on page 38.

src_install The src_install phase is no longer
empty but has a default now. This comes along with an
accompanying default function. See SRC-INSTALL-4
on page 42.

pkg_info on non-installed packages The pkg_info
phase can be called even for non-installed packages.
Be warned that dependencies might not have been in-
stalled at execution time. See PKG-INFO on page 43.

econf changes The helper function now always acti-
vates --disable-dependency-tracking. See
ECONF-OPTIONS on page 59.

USE dependency defaults In addition to the features of-
fered in EAPI 2 for USE dependencies, a (+) or (-)
can be added after a USE flag (mind the parentheses).
The former specifies that flags not in IUSE should be
treated as enabled; the latter, disabled. Cannot be used
with USE_EXPAND flags. This mimics parts of the be-
haviour of --missing in built_with_use. See
USE-DEP-DEFAULTS on page 36.

Controllable compression All items in the doc, info,
man subdirectories of /usr/share/ may be com-
pressed on-disk after src_install, except for
/usr/share/doc/${PF}/html. docompress
path ... adds paths to the inclusion list for com-
pression. docompress -x path ... adds paths
to the exclusion list. See DOCOMPRESS on page 64.

nonfatal for commands If you call nonfatal the
command given as argument will not abort the build pro-
cess in case of a failure (as is the default) but will return
non-zero on failure. See NONFATAL on page 56.

dodoc recursion If the -r switch is given as first argu-
ment and followed by directories, files from there are in-
stalled recursively. See DODOC on page 61.

doins symlink support Symbolic links are now properly
installed when using recursion (-r switch). See DOINS

on page 62.

PROPERTIES Is mandatory for all package managers now
to support interactive installs.

REQUIRED_USE This variable can be used similar to the
(R|P)DEPEND variables and define sets of USE flag
combinations that are not allowed. All elements can be
further nested to achieve more functionality.

Illegal combination To prevent activation of flag1 if
flag2 is enabled use "flag2? (!flag1)".

OR If at least one USE flag out of many must be acti-
vated on flag1 use "flag1? (|| (flag2
flag3 ...))".

XOR To allow exactly one USE flag out of many use
"^^(flag1 flag2 ...)".

See REQUIRED-USE on page 29.

MERGE_TYPE This variable contains one of three possible
values to allow checks if it is normal merge with compi-
lation and installation (source), installation of a binary
package (binary), or a compilation without installation
(buildonly). See MERGE-TYPE on page 51.

REPLACING_VERSIONS, REPLACED_BY_VERSION
These variables, valid in pkg_*, contain a list of all
versions (PVR) of this package that we are replacing,
and the version that is replacing the current one,
respectively. See REPLACE-VERSION-VARS on page 53.

Removals/Bans

dohard, dosed Both functions are not allowed any more.
See BANNED-COMMANDS on page 56.

No RDEPEND fall-back The package manager will not fall
back to RDEPEND=DEPEND if RDEPEND is undefined.
See RDEPEND-DEPEND on page 30.

S fallback changes The value of the variable S will not au-
tomatically be changed to WORKDIR, if S is not a direc-
tory, but abort. Virtual packages are the only exception.
See S-WORKDIR-FALLBACK on page 38.

AA, KV These variables are not defined any more. See AA

on page 49 and KV on page 51.

EAPI 5 (2012-09-20)

Additions/Changes

Sub-slots The SLOT variable and slot dependencies may
contain an optional sub-slot part that follows the regular
slot, delimited by a / character; for example 2/2.30.
The sub-slot is used to represent cases in which an up-
grade to a new version of a package with a different sub-
slot may require dependent packages to be rebuilt. If the
sub-slot is not specified in SLOT, it defaults to the regu-
lar slot. See SUB-SLOT on page 36.

Slot operator dependencies Package dependencies can
specify one of the following operators as a suffix, which
will affect updates of runtime dependencies:

:* Any slot value is acceptable. The package will not
break when its dependency is updated.

:= Any slot value is acceptable, but the package can
break when its dependency is updated to a different
slot (or sub-slot).

See SLOT-OPERATOR-DEPS on page 36.

Profile IUSE injection Apart from the USE flags explicitly
listed in IUSE, additional flags can be implicitly provided
by profiles. See PROFILE-IUSE-INJECT on page 53.

At-most-one-of groups In REQUIRED_USE you can use
"?? (flag1 flag2 ...)" to allow zero or one
USE flag out of many. See AT-MOST-ONE-OF on page 33.

Parallel tests The default for src_test runs emake
without -j1 now. See PARALLEL-TESTS on page 41.

econf changes The econf function now always passes
--disable-silent-rules to configure. See
ECONF-OPTIONS on page 59.

has_version and best_version changes The two
helpers support a --host-root option that causes
the query to apply to the host root instead of ROOT.
See HOST-ROOT-OPTION on page 57.

usex Usage for this helper function is usex <USE flag>
[true1] [false1] [true2] [false2]. If the USE flag is set, out-
puts [true1][true2] (defaults to yes), otherwise outputs
[false1][false2] (defaults to no). See USEX on page 66.

doheader and newheader These new helper functions
install the given header file(s) into /usr/include.
The -r option enables recursion for doheader, sim-
ilar to doins. See DOHEADER on page 61.

new* standard input The newins etc. commands read
from standard input if the first argument is - (a hyphen).
See NEWFOO-STDIN on page 63.

EBUILD_PHASE_FUNC This variable is very similar to
EBUILD_PHASE, but contains the name of the current
ebuild function. See EBUILD-PHASE-FUNC on page 51.

Stable use masking/forcing New files use.stable.
{mask,force} and package.use.stable.
{mask,force} are supported in profile directories.
They are similar to their non-stable counterparts, but
act only on packages that would be merged due to a
stable keyword. See STABLEMASK on page 23.

EAPI 6 (2015-11-13)

Additions/Changes

Bash version Ebuilds can use features of Bash version 4.2
(was 3.2 before). See BASH-VERSION on page 27.

failglob The failglob option of Bash is set in global
scope, so that unintentional pattern expansion will be
caught as an error. See FAILGLOB on page 55.

Locale settings It is ensured that the behaviour of case
modification and collation order for ASCII characters
(LC_CTYPE and LC_COLLATE) are the same as in the
POSIX locale. See LOCALE-SETTINGS on page 52.

src_prepare This phase function has a default now,
which applies patches from the PATCHES variable with
the new eapply command, and user-provided patches
with eapply_user. See SRC-PREPARE-6 on page 40.

src_install The default implementation uses the new
einstalldocs function for installing documentation.
See SRC-INSTALL-6 on page 42.

nonfatal die When die or assert are called under
the nonfatal command and with the -n option, they
will not abort the build process but return with an error.
See NONFATAL-DIE on page 57.

unpack changes unpack has been extended:

Pathnames Both absolute paths and paths relative to
the working directory are accepted as arguments.
See UNPACK-ABSOLUTE on page 67.

.txz files Suffix .txz for xz compressed tarballs is
recognised. See UNPACK-EXTENSIONS on page 67.

Filename case Character case of filename extensions
is ignored. See UNPACK-IGNORE-CASE on page 67.

econf changes Options --docdir and --htmldir
are passed to configure, in addition to the existing
options. See ECONF-OPTIONS on page 59.

eapply The eapply command is a simplified substitute
for epatch, implemented in the package manager. The
patches from its file or directory arguments are applied
using patch -p1. See EAPPLY on page 58.

eapply_user The eapply_user command permits
the package manager to apply user-provided patches.
It must be called from every src_prepare function.
See EAPPLY-USER on page 58.

einstalldocs The einstalldocs function will in-
stall the files specified by the DOCS variable (or a default
set of files if DOCS is unset) and by the HTML_DOCS
variable. See EINSTALLDOCS on page 68.

in_iuse The in_iuse function returns true if the USE
flag given as its argument is available in the ebuild for
USE queries. See IN-IUSE on page 66.

get_libdir The get_libdir command outputs the
lib* directory basename suitable for the current ABI.
See GET-LIBDIR on page 68.

Removals/Bans

einstall No longer allowed. Use emake install
as replacement. See BANNED-COMMANDS on page 56.

	EAPIs 0, 1, and 2
	EAPI 3 (2010-01-18)
	Additions/Changes

	EAPI 4 (2011-01-17)
	Additions/Changes
	Removals/Bans

	EAPI 5 (2012-09-20)
	Additions/Changes

	EAPI 6 (2015-11-13)
	Additions/Changes
	Removals/Bans

