diff options
Diffstat (limited to 'dev-python/astroscrappy/files/astroscrappy-1.0.3-endian-fix-tests.patch')
-rw-r--r-- | dev-python/astroscrappy/files/astroscrappy-1.0.3-endian-fix-tests.patch | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/dev-python/astroscrappy/files/astroscrappy-1.0.3-endian-fix-tests.patch b/dev-python/astroscrappy/files/astroscrappy-1.0.3-endian-fix-tests.patch new file mode 100644 index 000000000000..7a2bbb6299c6 --- /dev/null +++ b/dev-python/astroscrappy/files/astroscrappy-1.0.3-endian-fix-tests.patch @@ -0,0 +1,100 @@ +From 5b5ce99c63d03e60b6027f09f72231db11a87bf2 Mon Sep 17 00:00:00 2001 +From: Curtis McCully <cmccully@lcogt.net> +Date: Thu, 3 Dec 2015 12:02:38 -0800 +Subject: [PATCH] Made tests not endian specific. +--- a/astroscrappy/tests/test_utils.py ++++ b/astroscrappy/tests/test_utils.py +@@ -56,7 +56,7 @@ + + + def test_medfilt5(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npmed5 = ndimage.filters.median_filter(a, size=(5, 5), mode='nearest') + npmed5[:2, :] = a[:2, :] + npmed5[-2:, :] = a[-2:, :] +@@ -68,7 +68,7 @@ + + + def test_medfilt7(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npmed7 = ndimage.filters.median_filter(a, size=(7, 7), mode='nearest') + npmed7[:3, :] = a[:3, :] + npmed7[-3:, :] = a[-3:, :] +@@ -80,7 +80,7 @@ + + + def test_sepmedfilt3(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npmed3 = ndimage.filters.median_filter(a, size=(1, 3), mode='nearest') + npmed3[:, :1] = a[:, :1] + npmed3[:, -1:] = a[:, -1:] +@@ -95,7 +95,7 @@ + + + def test_sepmedfilt5(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npmed5 = ndimage.filters.median_filter(a, size=(1, 5), mode='nearest') + npmed5[:, :2] = a[:, :2] + npmed5[:, -2:] = a[:, -2:] +@@ -110,7 +110,7 @@ + + + def test_sepmedfilt7(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npmed7 = ndimage.filters.median_filter(a, size=(1, 7), mode='nearest') + npmed7[:, :3] = a[:, :3] + npmed7[:, -3:] = a[:, -3:] +@@ -125,7 +125,7 @@ + + + def test_sepmedfilt9(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npmed9 = ndimage.filters.median_filter(a, size=(1, 9), mode='nearest') + npmed9[:, :4] = a[:, :4] + npmed9[:, -4:] = a[:, -4:] +@@ -174,7 +174,7 @@ + + + def test_subsample(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + npsubsamp = np.zeros((a.shape[0] * 2, a.shape[1] * 2), dtype=np.float32) + for i in range(a.shape[0]): + for j in range(a.shape[1]): +@@ -189,8 +189,8 @@ + + def test_rebin(): + a = np.ascontiguousarray(np.random.random((2002, 2002)), dtype=np.float32) +- a = a.astype('<f4') +- nprebin = np.zeros((1001, 1001), dtype=np.float32).astype('<f4') ++ a = a.astype('f4') ++ nprebin = np.zeros((1001, 1001), dtype=np.float32).astype('f4') + for i in range(1001): + for j in range(1001): + nprebin[i, j] = (a[2 * i, 2 * j] + a[2 * i + 1, 2 * j] + +@@ -202,7 +202,7 @@ + + + def test_laplaceconvolve(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') + k = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]]) + k = k.astype('<f4') + npconv = ndimage.filters.convolve(a, k, mode='constant', cval=0.0) +@@ -211,8 +211,8 @@ + + + def test_convolve(): +- a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('<f4') +- k = np.ascontiguousarray(np.random.random((5, 5))).astype('<f4') ++ a = np.ascontiguousarray(np.random.random((1001, 1001))).astype('f4') ++ k = np.ascontiguousarray(np.random.random((5, 5))).astype('f4') + npconv = ndimage.filters.convolve(a, k, mode='constant', cval=0.0) + cconv = convolve(a, k) + assert_allclose(cconv, npconv, rtol=0, atol=1e-5) |