blob: 48a01218a4e056d672dc0c22f14eeeba3287cfb3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
# Copyright 2022-2023 Gentoo Authors
# Distributed under the terms of the GNU General Public License v2
EAPI=8
PYTHON_COMPAT=( python3_{9..11} )
inherit python-single-r1 cmake cuda flag-o-matic
MYPN=pytorch
MYP=${MYPN}-${PV}
DESCRIPTION="A deep learning framework"
HOMEPAGE="https://pytorch.org/"
SRC_URI="https://github.com/pytorch/${MYPN}/archive/refs/tags/v${PV}.tar.gz
-> ${MYP}.tar.gz"
LICENSE="BSD"
SLOT="0"
KEYWORDS="~amd64"
IUSE="cuda distributed fbgemm ffmpeg mpi nnpack +numpy opencl opencv openmp qnnpack tensorpipe xnnpack"
RESTRICT="test"
REQUIRED_USE="
${PYTHON_REQUIRED_USE}
ffmpeg? ( opencv )
mpi? ( distributed )
tensorpipe? ( distributed )
" # ?? ( cuda rocm )
# CUDA 12 not supported yet: https://github.com/pytorch/pytorch/issues/91122
RDEPEND="
${PYTHON_DEPS}
dev-cpp/gflags:=
>=dev-cpp/glog-0.5.0
dev-libs/cpuinfo
dev-libs/libfmt
dev-libs/protobuf:=
dev-libs/pthreadpool
dev-libs/sleef
sci-libs/lapack
>=sci-libs/onnx-1.12.0
sci-libs/foxi
cuda? (
=dev-libs/cudnn-8*
dev-libs/cudnn-frontend:0/8
<dev-util/nvidia-cuda-toolkit-12:=[profiler]
)
fbgemm? ( dev-libs/FBGEMM )
ffmpeg? ( media-video/ffmpeg:= )
mpi? ( sys-cluster/openmpi )
nnpack? ( sci-libs/NNPACK )
numpy? ( $(python_gen_cond_dep '
dev-python/numpy[${PYTHON_USEDEP}]
') )
opencl? ( virtual/opencl )
opencv? ( media-libs/opencv:= )
qnnpack? ( sci-libs/QNNPACK )
tensorpipe? ( sci-libs/tensorpipe )
xnnpack? ( >=sci-libs/XNNPACK-2022.12.22 )
"
DEPEND="
${RDEPEND}
dev-cpp/eigen
cuda? ( dev-libs/cutlass )
dev-libs/psimd
dev-libs/FP16
dev-libs/FXdiv
dev-libs/pocketfft
dev-libs/flatbuffers
sci-libs/kineto
$(python_gen_cond_dep '
dev-python/pyyaml[${PYTHON_USEDEP}]
dev-python/pybind11[${PYTHON_USEDEP}]
')
"
S="${WORKDIR}"/${MYP}
PATCHES=(
"${FILESDIR}"/${P}-gentoo.patch
"${FILESDIR}"/${PN}-1.13.0-install-dirs.patch
"${FILESDIR}"/${PN}-1.12.0-glog-0.6.0.patch
"${FILESDIR}"/${PN}-1.13.1-tensorpipe.patch
"${FILESDIR}"/${P}-gcc13.patch
)
src_prepare() {
filter-lto #bug 862672
cmake_src_prepare
pushd torch/csrc/jit/serialization || die
flatc --cpp --gen-mutable --scoped-enums mobile_bytecode.fbs || die
popd
}
src_configure() {
if use cuda && [[ -z ${TORCH_CUDA_ARCH_LIST} ]]; then
ewarn "WARNING: caffe2 is being built with its default CUDA compute capabilities: 3.5 and 7.0."
ewarn "These may not be optimal for your GPU."
ewarn ""
ewarn "To configure caffe2 with the CUDA compute capability that is optimal for your GPU,"
ewarn "set TORCH_CUDA_ARCH_LIST in your make.conf, and re-emerge caffe2."
ewarn "For example, to use CUDA capability 7.5 & 3.5, add: TORCH_CUDA_ARCH_LIST=7.5,3.5"
ewarn "For a Maxwell model GPU, an example value would be: TORCH_CUDA_ARCH_LIST=Maxwell"
ewarn ""
ewarn "You can look up your GPU's CUDA compute capability at https://developer.nvidia.com/cuda-gpus"
ewarn "or by running /opt/cuda/extras/demo_suite/deviceQuery | grep 'CUDA Capability'"
fi
local mycmakeargs=(
-DBUILD_CUSTOM_PROTOBUF=OFF
-DBUILD_SHARED_LIBS=ON
-DUSE_CCACHE=OFF
-DUSE_CUDA=$(usex cuda)
-DUSE_CUDNN=$(usex cuda)
-DUSE_FAST_NVCC=$(usex cuda)
-DTORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-3.5 7.0}"
-DUSE_DISTRIBUTED=$(usex distributed)
-DUSE_MPI=$(usex mpi)
-DUSE_FAKELOWP=OFF
-DUSE_FBGEMM=$(usex fbgemm)
-DUSE_FFMPEG=$(usex ffmpeg)
-DUSE_GFLAGS=ON
-DUSE_GLOG=ON
-DUSE_GLOO=OFF
-DUSE_KINETO=OFF # TODO
-DUSE_LEVELDB=OFF
-DUSE_MAGMA=OFF # TODO: In GURU as sci-libs/magma
-DUSE_MKLDNN=OFF
-DUSE_NCCL=OFF # TODO: NVIDIA Collective Communication Library
-DUSE_NNPACK=$(usex nnpack)
-DUSE_QNNPACK=$(usex qnnpack)
-DUSE_XNNPACK=$(usex xnnpack)
-DUSE_SYSTEM_XNNPACK=$(usex xnnpack)
-DUSE_TENSORPIPE=$(usex tensorpipe)
-DUSE_PYTORCH_QNNPACK=OFF
-DUSE_NUMPY=$(usex numpy)
-DUSE_OPENCL=$(usex opencl)
-DUSE_OPENCV=$(usex opencv)
-DUSE_OPENMP=$(usex openmp)
-DUSE_ROCM=OFF # TODO
-DUSE_SYSTEM_CPUINFO=ON
-DUSE_SYSTEM_PYBIND11=ON
-DUSE_UCC=OFF
-DUSE_VALGRIND=OFF
-DPYBIND11_PYTHON_VERSION="${EPYTHON#python}"
-DPYTHON_EXECUTABLE="${PYTHON}"
-DUSE_ITT=OFF
-DBLAS=Eigen # avoid the use of MKL, if found on the system
-DUSE_SYSTEM_EIGEN_INSTALL=ON
-DUSE_SYSTEM_PTHREADPOOL=ON
-DUSE_SYSTEM_FXDIV=ON
-DUSE_SYSTEM_FP16=ON
-DUSE_SYSTEM_GLOO=ON
-DUSE_SYSTEM_ONNX=ON
-DUSE_SYSTEM_SLEEF=ON
-Wno-dev
-DTORCH_INSTALL_LIB_DIR="${EPREFIX}"/usr/$(get_libdir)
-DLIBSHM_INSTALL_LIB_SUBDIR="${EPREFIX}"/usr/$(get_libdir)
)
if use cuda; then
addpredict "/dev/nvidiactl" # bug 867706
mycmakeargs+=(
-DCMAKE_CUDA_FLAGS="$(cuda_gccdir -f | tr -d \")"
)
fi
cmake_src_configure
}
src_install() {
cmake_src_install
insinto "/var/lib/${PN}"
doins "${BUILD_DIR}"/CMakeCache.txt
rm -rf python
mkdir -p python/torch/include || die
mv "${ED}"/usr/lib/python*/site-packages/caffe2 python/ || die
mv "${ED}"/usr/include/torch python/torch/include || die
cp torch/version.py python/torch/ || die
rm -rf "${ED}"/var/tmp || die
python_domodule python/caffe2
python_domodule python/torch
}
|