summaryrefslogtreecommitdiff
blob: fb25a043d1ff3692b802848a23c8a06cae47a837 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
diff -ur gnuplot-py-1.7/ANNOUNCE.txt gnuplot-py-1.7-numpy/ANNOUNCE.txt
--- gnuplot-py-1.7/ANNOUNCE.txt	2003-10-17 18:03:10.000000000 +0300
+++ gnuplot-py-1.7-numpy/ANNOUNCE.txt	2007-11-20 22:17:29.000000000 +0200
@@ -9,7 +9,7 @@
 
 Prerequisites (see footnotes):
     the Python interpreter [1]
-    the Python Numeric module [3]
+    the Python numpy module [3]
     the gnuplot program [2]
 
 or, to use it under Java (experimental):
@@ -20,7 +20,7 @@
 
 Some ways this package can be used:
 
-1. Interactive data processing: Use Python's excellent Numeric package
+1. Interactive data processing: Use Python's excellent numpy package
    to create and manipulate arrays of numbers, and use Gnuplot.py to
    visualize the results.
 2. Web graphics: write CGI scripts in Python that use gnuplot to
diff -ur gnuplot-py-1.7/demo.py gnuplot-py-1.7-numpy/demo.py
--- gnuplot-py-1.7/demo.py	2003-10-17 17:28:10.000000000 +0300
+++ gnuplot-py-1.7-numpy/demo.py	2007-11-20 22:36:59.000000000 +0200
@@ -16,7 +16,7 @@
 __cvs_version__ = '$Revision: 1.1 $'
 
 
-from Numeric import *
+from numpy import *
 
 # If the package has been installed correctly, this should work:
 import Gnuplot, Gnuplot.funcutils
@@ -31,7 +31,7 @@
     g = Gnuplot.Gnuplot(debug=1)
     g.title('A simple example') # (optional)
     g('set data style linespoints') # give gnuplot an arbitrary command
-    # Plot a list of (x, y) pairs (tuples or a Numeric array would
+    # Plot a list of (x, y) pairs (tuples or a numpy array would
     # also be OK):
     g.plot([[0,1.1], [1,5.8], [2,3.3], [3,4.2]])
     raw_input('Please press return to continue...\n')
@@ -39,7 +39,7 @@
     g.reset()
     # Plot one dataset from an array and one via a gnuplot function;
     # also demonstrate the use of item-specific options:
-    x = arange(10, typecode=Float)
+    x = arange(10, dtype='float_')
     y1 = x**2
     # Notice how this plotitem is created here but used later?  This
     # is convenient if the same dataset has to be plotted multiple
@@ -74,8 +74,8 @@
     # Make a 2-d array containing a function of x and y.  First create
     # xm and ym which contain the x and y values in a matrix form that
     # can be `broadcast' into a matrix of the appropriate shape:
-    xm = x[:,NewAxis]
-    ym = y[NewAxis,:]
+    xm = x[:,newaxis]
+    ym = y[newaxis,:]
     m = (sin(xm) + 0.1*xm) - ym**2
     g('set parametric')
     g('set data style lines')
diff -ur gnuplot-py-1.7/FAQ.txt gnuplot-py-1.7-numpy/FAQ.txt
--- gnuplot-py-1.7/FAQ.txt	2003-10-17 17:28:10.000000000 +0300
+++ gnuplot-py-1.7-numpy/FAQ.txt	2007-11-20 22:17:50.000000000 +0200
@@ -17,7 +17,7 @@
 #! /usr/bin/python2
 
 import Gnuplot, Gnuplot.funcutils
-from Numeric import *
+from numpy import *
 
 g = Gnuplot.Gnuplot()
 g.plot([[0,1.1], [1,5.8], [2,3.3], [3,4.2]])
diff -ur gnuplot-py-1.7/funcutils.py gnuplot-py-1.7-numpy/funcutils.py
--- gnuplot-py-1.7/funcutils.py	2003-10-17 17:28:10.000000000 +0300
+++ gnuplot-py-1.7-numpy/funcutils.py	2007-11-20 22:25:24.000000000 +0200
@@ -16,19 +16,19 @@
 
 __cvs_version__ = '$Revision: 1.1 $'
 
-import Numeric
+import numpy
 
 import Gnuplot, utils
 
 
-def tabulate_function(f, xvals, yvals=None, typecode=None, ufunc=0):
+def tabulate_function(f, xvals, yvals=None, dtype=None, ufunc=0):
     """Evaluate and tabulate a function on a 1- or 2-D grid of points.
 
     f should be a function taking one or two floating-point
     parameters.
 
     If f takes one parameter, then xvals should be a 1-D array and
-    yvals should be None.  The return value is a Numeric array
+    yvals should be None.  The return value is a numpy array
     '[f(x[0]), f(x[1]), ..., f(x[-1])]'.
 
     If f takes two parameters, then 'xvals' and 'yvals' should each be
@@ -39,7 +39,7 @@
 
     If 'ufunc=0', then 'f' is evaluated at each point using a Python
     loop.  This can be slow if the number of points is large.  If
-    speed is an issue, you should write 'f' in terms of Numeric ufuncs
+    speed is an issue, you should write 'f' in terms of numpy ufuncs
     and use the 'ufunc=1' feature described next.
 
     If called with 'ufunc=1', then 'f' should be a function that is
@@ -51,34 +51,33 @@
 
     if yvals is None:
         # f is a function of only one variable:
-        xvals = Numeric.asarray(xvals, typecode)
+        xvals = numpy.asarray(xvals, dtype)
 
         if ufunc:
             return f(xvals)
         else:
-            if typecode is None:
-                typecode = xvals.typecode()
+            if dtype is None:
+                dtype = xvals.dtype.char
 
-            m = Numeric.zeros((len(xvals),), typecode)
+            m = numpy.zeros((len(xvals),), dtype)
             for xi in range(len(xvals)):
                 x = xvals[xi]
                 m[xi] = f(x)
             return m
     else:
         # f is a function of two variables:
-        xvals = Numeric.asarray(xvals, typecode)
-        yvals = Numeric.asarray(yvals, typecode)
+        xvals = numpy.asarray(xvals, dtype)
+        yvals = numpy.asarray(yvals, dtype)
 
         if ufunc:
-            return f(xvals[:,Numeric.NewAxis], yvals[Numeric.NewAxis,:])
+            return f(xvals[:,numpy.newaxis], yvals[numpy.newaxis,:])
         else:
-            if typecode is None:
+            if dtype is None:
                 # choose a result typecode based on what '+' would return
                 # (yecch!):
-                typecode = (Numeric.zeros((1,), xvals.typecode()) +
-                            Numeric.zeros((1,), yvals.typecode())).typecode()
-
-            m = Numeric.zeros((len(xvals), len(yvals)), typecode)
+                dtype = (numpy.zeros((1,), xvals.dtype.char) +
+                        numpy.zeros((1,), yvals.dtype.char)).dtype.char
+            m = numpy.zeros((len(xvals), len(yvals)), dtype)
             for xi in range(len(xvals)):
                 x = xvals[xi]
                 for yi in range(len(yvals)):
diff -ur gnuplot-py-1.7/_Gnuplot.py gnuplot-py-1.7-numpy/_Gnuplot.py
--- gnuplot-py-1.7/_Gnuplot.py	2003-10-17 17:28:10.000000000 +0300
+++ gnuplot-py-1.7-numpy/_Gnuplot.py	2007-11-20 22:37:26.000000000 +0200
@@ -228,8 +228,8 @@
 
         'items' is a sequence of items, each of which should be a
         'PlotItem' of some kind, a string (interpreted as a function
-        string for gnuplot to evaluate), or a Numeric array (or
-        something that can be converted to a Numeric array).
+        string for gnuplot to evaluate), or a numpy array (or
+        something that can be converted to a numpy array).
 
         """
 
diff -ur gnuplot-py-1.7/__init__.py gnuplot-py-1.7-numpy/__init__.py
--- gnuplot-py-1.7/__init__.py	2003-10-17 18:04:29.000000000 +0300
+++ gnuplot-py-1.7-numpy/__init__.py	2007-11-20 22:19:00.000000000 +0200
@@ -128,9 +128,9 @@
 
 Restrictions:
 
- -  Relies on the Numeric Python extension.  This can be obtained from
-    "SourceForge", http://sourceforge.net/projects/numpy/.  If you're
-    interested in gnuplot, you would probably also want NumPy anyway.
+ -  Relies on the numpy Python extension.  This can be obtained from
+    the Scipy group at <http://www.scipy.org/Download>..  If you're
+    interested in gnuplot, you would probably also want numpy anyway.
 
  -  Only a small fraction of gnuplot functionality is implemented as
     explicit method functions.  However, you can give arbitrary
diff -ur gnuplot-py-1.7/NEWS.txt gnuplot-py-1.7-numpy/NEWS.txt
--- gnuplot-py-1.7/NEWS.txt	2003-10-17 18:04:29.000000000 +0300
+++ gnuplot-py-1.7-numpy/NEWS.txt	2007-11-20 22:22:08.000000000 +0200
@@ -57,7 +57,7 @@
   equivalent.)  If I find the time I might try to produce a version
   that doesn't require Numeric at all, under either Python or Jython.
 
-* Removed the oldplot.py module: (1) I doubt anybody is still using
+ Removed the oldplot.py module: (1) I doubt anybody is still using
   it. (2) It seems to be broken anyway. (3) I don't have the energy to
   fix or maintain it.  Let me know if I'm wrong about point 1.
 
@@ -222,10 +222,10 @@
   dataset; e.g., what used to be written as
 
       g = Gnuplot.Gnuplot()
-      x = Numeric.arange(100)/10.0
+      x = numpy.arange(100)/10.0
       y = x**2
       # Create an array of (x,y) pairs:
-      g.plot(Gnuplot.Data(Numeric.transpose((x, y))))
+      g.plot(Gnuplot.Data(numpy.transpose((x, y))))
 
   can now be shortened to
 
diff -ur gnuplot-py-1.7/PlotItems.py gnuplot-py-1.7-numpy/PlotItems.py
--- gnuplot-py-1.7/PlotItems.py	2003-10-17 17:39:03.000000000 +0300
+++ gnuplot-py-1.7-numpy/PlotItems.py	2007-11-20 22:34:49.000000000 +0200
@@ -23,7 +23,7 @@
 except ImportError:
     from StringIO import StringIO
 
-import Numeric
+import numpy
 
 import gp, utils, Errors
 
@@ -471,12 +471,12 @@
     return apply(_FileItem, (filename,), keyw)
 
 
-def Data(*set, **keyw):
-    """Create and return a _FileItem representing the data from *set.
+def Data(*data, **keyw):
+    """Create and return a _FileItem representing the data from *data.
 
     Create a '_FileItem' object (which is a type of 'PlotItem') out of
-    one or more Float Python Numeric arrays (or objects that can be
-    converted to a Float Numeric array).  If the routine is passed a
+    one or more Float Python numpy arrays (or objects that can be
+    converted to a float numpy array).  If the routine is passed a
     single with multiple dimensions, then the last index ranges over
     the values comprising a single data point (e.g., [<x>, <y>,
     <sigma>]) and the rest of the indices select the data point.  If
@@ -508,29 +508,29 @@
 
     """
 
-    if len(set) == 1:
-        # set was passed as a single structure
-        set = utils.float_array(set[0])
+    if len(data) == 1:
+        # data was passed as a single structure
+        data = utils.float_array(data[0])
 
         # As a special case, if passed a single 1-D array, then it is
         # treated as one value per point (by default, plotted against
         # its index):
-        if len(set.shape) == 1:
-            set = set[:,Numeric.NewAxis]
+        if len(data.shape) == 1:
+            data = data[:,numpy.newaxis]
     else:
-        # set was passed column by column (for example,
+        # data was passed column by column (for example,
         # Data(x,y)); pack it into one big array (this will test
         # that sizes are all the same):
-        set = utils.float_array(set)
-        dims = len(set.shape)
+        data = utils.float_array(data)
+        dims = len(data.shape)
         # transpose so that the last index selects x vs. y:
-        set = Numeric.transpose(set, (dims-1,) + tuple(range(dims-1)))
+        data = numpy.transpose(data, (dims-1,) + tuple(range(dims-1)))
     if keyw.has_key('cols'):
         cols = keyw['cols']
         del keyw['cols']
-        if type(cols) is types.IntType:
+        if isinstance(cols, types.IntType):
             cols = (cols,)
-        set = Numeric.take(set, cols, -1)
+        data = numpy.take(data, cols, -1)
 
     if keyw.has_key('inline'):
         inline = keyw['inline']
@@ -540,7 +540,7 @@
 
     # Output the content into a string:
     f = StringIO()
-    utils.write_array(f, set)
+    utils.write_array(f, data)
     content = f.getvalue()
     if inline:
         return apply(_InlineFileItem, (content,), keyw)
@@ -610,7 +610,7 @@
         raise Errors.DataError('data array must be two-dimensional')
 
     if xvals is None:
-        xvals = Numeric.arange(numx)
+        xvals = numpy.arange(numx)
     else:
         xvals = utils.float_array(xvals)
         if xvals.shape != (numx,):
@@ -619,7 +619,7 @@
                 'the first dimension of the data array')
 
     if yvals is None:
-        yvals = Numeric.arange(numy)
+        yvals = numpy.arange(numy)
     else:
         yvals = utils.float_array(yvals)
         if yvals.shape != (numy,):
@@ -647,17 +647,17 @@
         # documentation has the roles of x and y exchanged.  We ignore
         # the documentation and go with the code.
 
-        mout = Numeric.zeros((numy + 1, numx + 1), Numeric.Float32)
+        mout = numpy.zeros((numy + 1, numx + 1), numpy.float32)
         mout[0,0] = numx
-        mout[0,1:] = xvals.astype(Numeric.Float32)
-        mout[1:,0] = yvals.astype(Numeric.Float32)
+        mout[0,1:] = xvals.astype(numpy.float32)
+        mout[1:,0] = yvals.astype(numpy.float32)
         try:
             # try copying without the additional copy implied by astype():
-            mout[1:,1:] = Numeric.transpose(data)
+            mout[1:,1:] = numpy.transpose(data)
         except:
             # if that didn't work then downcasting from double
             # must be necessary:
-            mout[1:,1:] = Numeric.transpose(data.astype(Numeric.Float32))
+            mout[1:,1:] = numpy.transpose(data.astype(numpy.float32))
 
         content = mout.tostring()
         if gp.GnuplotOpts.prefer_fifo_data:
@@ -668,10 +668,10 @@
         # output data to file as "x y f(x)" triplets.  This
         # requires numy copies of each x value and numx copies of
         # each y value.  First reformat the data:
-        set = Numeric.transpose(
-            Numeric.array(
-                (Numeric.transpose(Numeric.resize(xvals, (numy, numx))),
-                 Numeric.resize(yvals, (numx, numy)),
+        set = numpy.transpose(
+            numpy.array(
+                (numpy.transpose(numpy.resize(xvals, (numy, numx))),
+                 numpy.resize(yvals, (numx, numy)),
                  data)), (1,2,0))
 
         # Now output the data with the usual routine.  This will
diff -ur gnuplot-py-1.7/README.txt gnuplot-py-1.7-numpy/README.txt
--- gnuplot-py-1.7/README.txt	2003-10-19 17:52:35.000000000 +0300
+++ gnuplot-py-1.7-numpy/README.txt	2007-11-20 22:35:30.000000000 +0200
@@ -65,8 +65,8 @@
 
 Obviously, you must have the gnuplot program if Gnuplot.py is to be of
 any use to you.  Gnuplot can be obtained via
-<http://www.gnuplot.info>.  You also need Python's Numerical
-extension, which is available from <http://numpy.sourceforge.net>.
+<http://www.gnuplot.info>.  You also need a copy of the numpy package, which
+is available from the Scipy group at <http://www.scipy.org/Download>.
 
 Gnuplot.py uses Python distutils
 <http://www.python.org/doc/current/inst/inst.html> and can be
diff -ur gnuplot-py-1.7/setup.py gnuplot-py-1.7-numpy/setup.py
--- gnuplot-py-1.7/setup.py	2003-10-17 17:52:28.000000000 +0300
+++ gnuplot-py-1.7-numpy/setup.py	2007-11-20 22:19:20.000000000 +0200
@@ -31,7 +31,7 @@
     author_email='mhagger@alum.mit.edu',
     url='http://gnuplot-py.sourceforge.net',
     license='LGPL',
-    licence='LGPL', # Spelling error in distutils
+    #licence='LGPL', # Spelling error in distutils
 
     # Description of the package in the distribution
     package_dir={'Gnuplot' : '.'},
diff -ur gnuplot-py-1.7/test.py gnuplot-py-1.7-numpy/test.py
--- gnuplot-py-1.7/test.py	2003-10-17 17:28:10.000000000 +0300
+++ gnuplot-py-1.7-numpy/test.py	2007-11-20 22:43:26.000000000 +0200
@@ -17,8 +17,7 @@
 __cvs_version__ = '$Revision: 1.1 $'
 
 import os, time, math, tempfile
-import Numeric
-from Numeric import NewAxis
+import numpy
 
 try:
     import Gnuplot, Gnuplot.PlotItems, Gnuplot.funcutils
@@ -55,7 +54,7 @@
     filename1 = tempfile.mktemp()
     f = open(filename1, 'w')
     try:
-        for x in Numeric.arange(100)/5. - 10.:
+        for x in numpy.arange(100.)/5. - 10.:
             f.write('%s %s %s\n' % (x, math.cos(x), math.sin(x)))
         f.close()
 
@@ -137,10 +136,10 @@
         g.plot(f)
 
         print '############### test Data ###################################'
-        x = Numeric.arange(100)/5. - 10.
-        y1 = Numeric.cos(x)
-        y2 = Numeric.sin(x)
-        d = Numeric.transpose((x,y1,y2))
+        x = numpy.arange(100)/5. - 10.
+        y1 = numpy.cos(x)
+        y2 = numpy.sin(x)
+        d = numpy.transpose((x,y1,y2))
 
         wait('Plot Data against its index')
         g.plot(Gnuplot.Data(y2, inline=0))
@@ -173,7 +172,7 @@
         g.plot(Gnuplot.Data(d, title='Cosine of x'))
 
         print '############### test compute_Data ###########################'
-        x = Numeric.arange(100)/5. - 10.
+        x = numpy.arange(100)/5. - 10.
 
         wait('Plot Data, computed by Gnuplot.py')
         g.plot(Gnuplot.funcutils.compute_Data(x, lambda x: math.cos(x), inline=0))
@@ -235,14 +234,14 @@
 
         print '############### test GridData and compute_GridData ##########'
         # set up x and y values at which the function will be tabulated:
-        x = Numeric.arange(35)/2.0
-        y = Numeric.arange(30)/10.0 - 1.5
+        x = numpy.arange(35)/2.0
+        y = numpy.arange(30)/10.0 - 1.5
         # Make a 2-d array containing a function of x and y.  First create
         # xm and ym which contain the x and y values in a matrix form that
         # can be `broadcast' into a matrix of the appropriate shape:
-        xm = x[:,NewAxis]
-        ym = y[NewAxis,:]
-        m = (Numeric.sin(xm) + 0.1*xm) - ym**2
+        xm = x[:,numpy.newaxis]
+        ym = y[numpy.newaxis,:]
+        m = (numpy.sin(xm) + 0.1*xm) - ym**2
         wait('a function of two variables from a GridData file')
         g('set parametric')
         g('set data style lines')
@@ -264,7 +263,7 @@
 
         wait('Use compute_GridData in ufunc and binary mode')
         g.splot(Gnuplot.funcutils.compute_GridData(
-            x,y, lambda x,y: Numeric.sin(x) + 0.1*x - y**2,
+            x,y, lambda x,y: numpy.sin(x) + 0.1*x - y**2,
             ufunc=1, binary=1,
             ))
 
diff -ur gnuplot-py-1.7/utils.py gnuplot-py-1.7-numpy/utils.py
--- gnuplot-py-1.7/utils.py	2003-10-17 17:38:44.000000000 +0300
+++ gnuplot-py-1.7-numpy/utils.py	2007-11-20 22:21:24.000000000 +0200
@@ -17,28 +17,32 @@
 __cvs_version__ = '$Revision: 1.1 $'
 
 import string
-import Numeric
+import numpy
 
 
 def float_array(m):
-    """Return the argument as a Numeric array of type at least 'Float32'.
+    """Return the argument as a numpy array of type at least 'Float32'.
 
     Leave 'Float64' unchanged, but upcast all other types to
     'Float32'.  Allow also for the possibility that the argument is a
-    python native type that can be converted to a Numeric array using
-    'Numeric.asarray()', but in that case don't worry about
+    python native type that can be converted to a numpy array using
+    'numpy.asarray()', but in that case don't worry about
     downcasting to single-precision float.
 
     """
 
     try:
         # Try Float32 (this will refuse to downcast)
-        return Numeric.asarray(m, Numeric.Float32)
+        return numpy.asarray(m, numpy.float32)
     except TypeError:
         # That failure might have been because the input array was
-        # of a wider data type than Float32; try to convert to the
+        # of a wider data type than float32; try to convert to the
         # largest floating-point type available:
-        return Numeric.asarray(m, Numeric.Float)
+        try:
+            return numpy.asarray(m, numpy.float_)
+        except TypeError:
+            print "Fatal: array dimensions not equal!"
+            return None
 
 
 def write_array(f, set,