blob: 16318458fc9fce4ac5986072f5281f42107c9b80 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
|
diff -r -U3 sympy-1.3.orig/sympy/functions/special/zeta_functions.py sympy-1.3/sympy/functions/special/zeta_functions.py
--- sympy-1.3.orig/sympy/functions/special/zeta_functions.py 2018-09-07 02:27:20.000000000 +0700
+++ sympy-1.3/sympy/functions/special/zeta_functions.py 2018-09-17 22:05:34.374733619 +0700
@@ -509,7 +509,7 @@
For `\operatorname{Re}(s) > 0`, this function is defined as
- .. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^n}{n^s}.
+ .. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}.
It admits a unique analytic continuation to all of :math:`\mathbb{C}`.
It is an entire, unbranched function.
|